Eulerian Calculus for the Contraction in the Wasserstein Distance

نویسندگان

  • Felix Otto
  • Michael Westdickenberg
چکیده

We consider the porous medium equation on a compact Riemannian manifold and give a new proof of the contraction of its semigroup in the Wasserstein distance. This proof is based on the insight that the porous medium equation does not increase the size of infinitesimal perturbations along gradient flow trajectories, and on an Eulerian formulation for the Wasserstein distance using smooth curves. Our approach avoids the existence result for optimal transport maps on Riemannian manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eulerian Calculus for the Displacement Convexity in the Wasserstein Distance

In this paper we give a new proof of the (strong) displacement convexity of a class of integral functionals de ned on a compact Riemannian manifold satisfying a lower Ricci curvature bound. Our approach does not rely on existence and regularity results for optimal transport maps on Riemannian manifolds, but it is based on the Eulerian point of view recently introduced by Otto-Westdickenberg in ...

متن کامل

Dimensional contraction via Markov transportation distance

It is now well known that curvature conditions à la Bakry-Émery are equivalent to contraction properties of the heat semigroup with respect to the classical quadratic Wasserstein distance. However, this curvature condition may include a dimensional correction which up to now had not induced any strenghtening of this contraction. We first consider the simplest example of the Euclidean heat semig...

متن کامل

Dimensional contraction in Wasserstein distance for diffusion semigroups on a Riemannian manifold

We prove a refined contraction inequality for diffusion semigroups with respect to the Wasserstein distance on a Riemannian manifold taking account of the dimension. The result generalizes in a Riemannian context, the dimensional contraction established in [BGG13] for the Euclidean heat equation. The theorem is proved by using a dimensional coercive estimate for the Hodge-de Rham semigroup on 1...

متن کامل

Eulerian Lagrangian Simulation of Particle Capture and Dendrite Formation on Binary Fibers

The capture efficiency of the small aerosol particle is strongly influenced by the structure of fibrous layers. This study presents particle deposition and dendrite formation on different arrangements of binary fibers. 2-D numerical simulation is performed using the open source software of OpenFOAM. In the instantaneous filtration of a single fiber, obtained results are in good agreement with th...

متن کامل

Posterior contraction in Gaussian process regression using Wasserstein approximations

We study posterior rates of contraction in Gaussian process regression with potentially unbounded covariate domain. Our argument relies on developing a Gaussian approximation to the posterior of the leading coefficients of a Karhunen–Loève expansion of the Gaussian process. The salient feature of our result is deriving such an approximation in the L2 Wasserstein distance and relating the speed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2005